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Acoustic signatures of partial saturation

Rosemary Knight∗, Jack Dvorkin‡, and Amos Nur‡

ABSTRACT

The relationship between elastic wave velocities and
water saturation in a water/gas reservoir depends strong-
ly on whether saturation is heterogeneous (patchy) or
homogeneous. Heterogeneity in saturation may result
from lithologic heterogeneity because under conditions
of capillary equilibrium, different lithologies within a
reservoir can have different saturations, depending on
their porosities and permeabilities. We investigate this
phenomenon by generating models of a reservoir in
which we control the distribution of lithologic units
and theoretically determine the corresponding velocity-
saturation relationship. We assume a state of capillary
equilibrium in the reservoir and determine the satura-
tion level of each region within the reservoir from the
corresponding capillary pressure curve for the lithologic
unit at that location. The velocities we calculate for these
models show that saturation heterogeneity, caused by
lithologic variation, can lead to a distinct dependence of
velocity on saturation. In a water-gas saturated reservoir,
a patchy distribution of the different lithologic units is
found to cause P-wave velocity to exhibit a noticeable
and almost continuous velocity variation across the en-
tire saturation range. This is in distinct contrast to the re-
sponse of a homogeneous reservoir where there is only
a large change in velocity at water saturations close to
100%.

INTRODUCTION

Elastic wave velocities in a partially saturated rock can be
affected strongly by the saturation history and resulting fluid
distribution. Over the past few years, there have been a number
of laboratory and theoretical studies addressing the importance
of fluid distribution in determining ultrasonic elastic wave ve-
locities in rock samples (Endres and Knight, 1989; Knight and
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Nolen-Hoeksema, 1990; Endres and Knight, 1991; Cadoret,
1993; Mavko and Nolen-Hoeksema, 1994). Specifically, it has
been found that the velocity is determined by the compliance
and saturation state of the various regions of the pore space. In
this way the saturation distribution at the pore scale and sample
scale determines the observed velocity-saturation relationship
for the rock sample.

Figure 1 shows laboratory data from Cadoret (1993) col-
lected on a carbonate sample at frequencies of 1 and 100 kHz.
This figure shows the variation in P-wave velocity VP when
the saturation is changed by imbibition and by drainage; in
this case, saturation is the volume fraction of the pore space
filled with water, with the remainder being filled with air. The
imbibition process involved increasing saturation through the
spontaneous uptake of water followed by depressurization of
a saturated sample; the drainage process involved decreasing
saturation through evaporative drying. During imbibition the
velocity is almost constant or gently decreases with increasing
saturation throughout most of the saturation range. Only at
saturations very close to 1.0 does velocity show a very steep
increase. The situation is quite different during drainage: ve-
locity steadily decreases with decreasing saturation, passes a
minimum, and then starts to gently increase. The same form
of velocity-saturation behavior was observed in sandstones
by Knight and Nolen-Hoeksema (1990) during an imbibi-
tion/drainage experiment. The differences between the imbi-
bition and drainage ultrasonic data can be attributed to both
pore-scale and sample-scale fluid distribution effects.

Theoretical modeling of pore-scale phenomena (Endres and
Knight, 1991) and X-ray tomographic imaging of samples
(Cadoret, 1993) have provided possible explanations for the
differences observed between imbibition and drainage data.
Our current understanding is that the imbibition process tends
to create a homogeneous distribution of the two fluid phases,
such that all pores, or regions of the pore space, contain both
water and gas, resulting in a saturation that is approximately
constant at all locations. In contrast, the drainage process cre-
ates a more heterogeneous saturation distribution at the pore
scale and sample scale, with fully saturated pores or regions
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adjacent to partially saturated elements. The key difference
between these two scenarios is the saturation state of the com-
pliant or crack-like regions of the pore space: Full saturation
with water can act to stiffen these compliant regions, thus in-
creasing acoustic velocity.

The effective stiffening of compliant regions is a frequency-
dependent phenomenon. At low frequencies, wave-induced
pressure changes in the pore fluid quickly dissipate so that
the pore-fluid pressure is very close to that of the high-
compressibility gas in the dry pore space. As a result, the pore
fluid accumulated in thin compliant pores can flow freely into
the dry pore space (the squirt-flow effect) and does not act
to reinforce the compliant part of the rock. However, at high
frequencies this pressure equilibration does not take place be-
cause the pore-fluid relaxation time is greater than the wave’s
period. Pore fluid located in the thin compliant pores is there-
fore trapped, and its wave-induced pressure variations are rel-
atively large. In this case, the fluid reinforces the compliant
pores and thus acts to increase the apparent stiffness of the
rock. The result is an increase in acoustic velocity.

This pore-scale process can repeat itself on a larger,
macroscopic-patch scale. At low frequencies, pore fluid can
flow easily between a saturated patch and the neighboring
undersaturated rock. Thus the saturated patch behaves as a
drained region in response to the passing wave. At sufficiently
higher frequencies, pore fluid is trapped in the patch and the
apparent stiffness of the patch becomes that of a fully saturated
infinite rock region. The difference between the macroscopic
squirt-flow effect and the pore-scale squirt-flow effect is that
the pore-fluid relaxation time increases as the size of the vol-
ume occupied by the pore fluid increases. The size of a patch
may be orders of magnitude larger than the size of a compliant
pore. Therefore, if pore fluid is arranged in patches, the appar-
ent stiffening of partially saturated rock in response to a sound
wave may take place even at low frequencies.

Let us now consider the observed difference between the im-
bibition and drainage data. At low frequencies the bulk mod-
ulus of a saturated or partially saturated rock is related to that

FIG. 1. Compressional-wave velocity versus saturation in a carbonate sample of about 30% porosity at 1 kHz
and 100 kHz frequency (Cadoret, 1993). Open circles indicate imbibition; solid circles show drainage.

of a dry (or gas-saturated) rock through Gassmann’s (1951)
formula:

KSaturated rock = KGrain

×
φKDry rock − (1+ φ)KFluidKDry rock

KGrain
+ KFluid

(1− φ)KFluid + φKGrain − KFluidKDry rock

KGrain

(1)

where φ is porosity, and K is the bulk modulus of the compo-
nent indicated by the subscript. The shear modulus GSaturated rock

of a saturated or partially saturated rock equals that of a dry
rock. The bulk modulus of the pore fluid that is a liquid-gas
mixture is related to the moduli of the components as

1
KFluid

= S

KLiquid
+ 1− S

KGas
, (2)

where S is the level of liquid saturation. This description of the
modulus of the pore fluid is valid for the low-frequency case,
where fluid pressures equilibrate throughout the pore space.
It is also valid at higher frequencies when there is a homoge-
neous fluid distribution, such as is presumed to exist during
imbibition.

Let us assume certain reasonable values for the bulk moduli
(K ), density (ρ), porosity, and saturation:

KGrain = 36.6 GPa; KLiquid = 2.25 GPa;
KGas = 0.04 GPa; KDry rock = 15 GPa;
GDry rock = 17 GPa; φ = 0.2;
S= 0.8; ρGrain = 2650kg/m3;
ρLiquid = 1000 kg/m3; ρGas ¿ ρLiquid.

If we consider a case where S= 0.8, formula (2) yields KFluid=
0.187 GPa. By substituting this value into formula (1) we
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arrive at KSaturated rock = 15.32 GPa. The corresponding
compressional-wave velocity VP can be obtained as

VP =
√(

KSaturated rock + 4
3 GSaturated rock

)/
ρ,

ρ = (1− φ)ρGrain + φSρLiquid + φ(1− S)ρGas.

(3)

Formula (3) yieldsVP = 4082 m/s. This value is only 0.4% larger
than the dry-rock velocity of 4065 m/s. Therefore if liquid and
gas are mixed at the pore scale, the velocity shows a negligible
increase even at a high level of liquid saturation.

Let us now consider a second case, again with S= 0.8, but
assume that all the liquid is concentrated in fully saturated re-
gions that neighbor completely dry regions. Let us also assume
that the frequency is high enough so that a saturated region
has the stiffness of the fully saturated rock. Formula (1) yields
the bulk modulus of the fully saturated rock as KSaturated rock =
18.5 GPa. The corresponding velocity is VP = 4249 m/s, a 4%
increase from the velocity of the dry rock. Now we have par-
tially saturated rock that is a composite of two phases—fully
saturated rock and dry rock. The volumetric concentration of
the fully saturated regions is fSaturated = 0.8, whereas that of
dry regions is fDry = 0.2. The shear moduli of these two phases
are identical. For such a situation, Hill (1963) provides the fol-
lowing formula for the effective VP in the composite:

1
ρV2

P

= fSaturated

ρSatV2
P Sat

+ fDry

ρDryV2
PDry

, (4)

where ρSat and VP Sat, and ρDry and VP Dry are the densities and
velocities of the fully saturated rock, and of the dry rock, re-
spectively. By using formula (4), we obtain VP = 4209 m/s. This
value is much higher than the velocity of 4082 m/s predicted for
the rock where liquid and gas are mixed at the pore scale and
can explain the difference between the drainage and the im-
bibition data points in Figure 1. The heterogeneous saturation
distribution during drainage results in an effective stiffening of
water-saturated pores and patches. This causes a higher veloc-
ity than is seen during imbibition when the water and gas are
homogeneously distributed throughout the pore space.

The purpose of our present study is to apply this same con-
cept on a larger scale to investigate the dependence of velocity
on saturation in a water/gas reservoir. If a reservoir is com-
posed of regions of varying rock types, at any given reservoir-
scale saturation the regions of the reservoir can have different
local saturation levels. Saturation heterogeneity can exist at the
reservoir scale such that there are fully water-saturated regions
adjacent to partially saturated regions. The velocity-saturation
relationship at the reservoir scale will then be determined by
the velocity and saturation state of the various regions of the
reservoir. The key is to incorporate the control on the hetero-
geneity of local saturation in our models of a reservoir.

In this study we link saturation heterogeneity to the litho-
logic heterogeneity in a reservoir by assuming a state of cap-
illary equilibrium. Then regions, or patches, in the reservoir
of different lithologies will have different levels of saturation,
as determined from their capillary pressure curves. The veloc-
ity dependence on saturation in each homogeneous region can
be described with Gassmann’s equation. At the reservoir scale,
however, the variation in velocity with saturation is much more
complicated because of saturation heterogeneity. We find that

velocities can be sensitive to gas saturation, with the specific
form of dependence on saturation level determined by the vol-
ume fraction and distribution of rock types.

It is important to emphasize that capillary pressure curves
are affected strongly by permeability. Therefore, a critical fac-
tor that controls saturation heterogeneity and thus velocity in a
partially saturated reservoir is the permeability of the different
lithologies. This effect opens a potential avenue for inferring
the permeability distribution from velocity data.

QUANTITATIVE MODEL

Saturation

In each reservoir model, we assume a state of capillary equi-
librium such that capillary pressure everywhere is constant;
gravitational forces are neglected. The level of water satura-
tion S in a homogeneous region is related to capillary pressure
using the relationship determined by Brooks and Corey (1964):

S= Sirr + (1− Sirr )
(

Pt

Pc

)λ
, (5)

where Sirr is the irreducible water saturation, Pt is the threshold
pressure, Pc is the capillary pressure, and λ is constant for a
given lithology. The threshold pressure is a property of the rock
type and is a measure of the gas pressure required to initiate
the displacement of water. We use the relation between Pt and
permeability k given in Thomas et al. (1968) as

Pt = 52k−0.43, (6)

where pressure is in kilopascals (kPa) and permeability is in
microdarcies (mD). Irreducible water saturation is linked to
permeability in Timur’s (1968) empirical equation

Sirr = 11.59
φ1.26

k0.35
− 0.01, (7)

where permeability is in mD. Both saturation and porosity in
this equation are given as a fraction of one, not as a percentage.

Equations (5)–(7) are empirical relations and thus lack gen-
erality, but provide a means of quantifying the saturation
heterogeneity likely to occur in a reservoir. Figure 2 shows
schematic capillary pressure curves for two rocks with con-
trasting permeabilities. Under the conditions of capillary equi-
librium, where Pc is the same for the two rocks, it is apparent
that two neighboring lithologies can have very different fluid
saturations. In the example shown in Figure 2, at the selected
capillary pressure, the low-permeability rock is fully water-
saturated while the high-permeability rock is at a saturation
of about 0.35.

If a reservoir is composed of n different rock types, or litho-
logic units, with the volume fraction of the i th rock type fi ,
then the effective (global) saturation of the reservoir Sg can be
related to the local saturations Si and porosities φi as

Sg =

n∑
i=1

Siφi fi

n∑
i=1

φi fi

. (8)
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By using equations (5)–(8), and knowing the volume frac-
tions of different rock types in the reservoir and their per-
meabilities and porosities, we can relate global saturation to
capillary pressure.

Velocity

In our calculation of velocities, we assume that the reservoir
can be divided into a number of small regions or patches where
each patch is isotropic and composed of a single rock type. We
assume that the reservoir itself can be treated as an isotropic
effective medium with n constituents. If the elastic moduli of
each rock type are known, then an effective medium theory can
be applied to calculate the reservoir’s effective elastic moduli.
In this study, we use a static effective medium theory, Hashin-
Shtrikman bounds, and therefore an important limitation is
that the size of each patch is significantly smaller than a wave-
length.

We assume that the bulk modulus of each of the lithologic
patches can be estimated from Gassmann’s formula (1) with
the bulk modulus of the pore fluid given by equation (2). This
use of Gassmann’s formula implies that a fully saturated patch
that neighbors an undersaturated region is large enough that
at seismic frequencies the patch has the stiffness of the fully
saturated infinitely large rock region; that is, it behaves as an
undrained system. A criterion for the size of a patch is given
below.

The Hashin-Shtrikman bounds for the effective bulk modu-
lus Keff are (Berryman, 1995):[

n∑
i=1

fi
Ki + 4

3 Gmin

]−1

− 4
3

Gmin ≤ Keff

≤
[

n∑
i=1

fi
Ki + 4

3 Gmax

]−1

− 4
3

Gmax, (9)

where Ki is the bulk modulus of the i th lithologic unit, and Gmin

and Gmax are the minimum and the maximum shear modulus

FIG. 2. Schematic capillary pressure curves for a low-
permeability and a high-permeability rock. At the same cap-
illary pressure Pc these two neighboring lithologies may have
different saturations. The low-permeability rock is fully satu-
rated, whereas the high-permeability rock has a saturation of
about 0.35.

among the n lithologic units, respectively. The bounds for the
effective shear modulus Geff are n∑

i=1

fi

Gi + Gmin

6

(
9Kmin + 8Gmin

Kmin + 2Gmin

)

−1

− Gmin

6

(
9Kmin + 8Gmin

Kmin + 2Gmin

)
≤ Geff

≤

 n∑
i=1

fi

Gi + Gmax

6

(
9Kmax + 8Gmax

Kmax + 2Gmax

)

−1

− Gmax

6

(
9Kmax + 8Gmax

Kmax + 2Gmax

)
, (10)

where Gi is the shear modulus of the i th lithologic unit, and
Kmin and Kmax are the minimum and the maximum bulk mod-
ulus among the n lithologic units, respectively.

The effective P- and S-wave velocities (VP eff and VSeff, re-
spectively) are calculated as

VP eff =
√(

Keff + 4
3 Geff

)/
ρeff, VSeff =

√
Geff/ρeff ,

(11)

where ρeff is the effective (average) density of the reservoir.
By using equations (1), (2), and (5)–(11), we can calculate

the upper and the lower bounds for the effective P- and S-wave
velocities in a reservoir versus global saturation.

Limits for patch size

The final aspect of our model that must be considered is
the length-scale associated with the saturation heterogene-
ity. Based on the squirt-flow model presented in Dvorkin et
al. (1993), we use the following criterion for the minimum
characteristic size D of a finite-size patch at which the patch
has the stiffness of the equally saturated infinitely large rock
region:

f D2

κ
> 10, (12)

where f is frequency and κ is the diffusivity of rock. The dif-
fusivity is given as

κ = kF

µφ
,

1
F
= 1

KFluid
+ 1− φ − KDry rock/KGrain

φKGrain
,

where k is rock permeability and µ is fluid viscosity.
Equation (12) provides the lower limit for the size of a patch

as acceptable in our formulation. As mentioned above, this size
has to be much smaller (at least 10 times) than the wavelength
l . Finally, we arrive at the following bounds for D:√

10κ
f
< D <

l

10
. (13)
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Consider, for example, a water-filled Fontainbleau sandstone
sample of porosity 0.136 and permeability 670 mD (Lucet,
1989). In this case,

φ = 0.136, k = 0.67 · 10−12 m2, µ = 10−3 Pa · s,

KDry rock = 23.7 · 109 Pa,

KGrain = 36.6 · 109 Pa, KFluid = 2.25 · 109 Pa.

Then, for example, at 50-Hz frequency, the lower limit for D is
about 1.5 m. It is clear from formula (13) that for a rock with
smaller permeability, this bound will be even smaller. If the
P-wave velocity is 4.5 km/s then the wavelength is 90 m and
formula (13) yields 1.5 m< D< 9 m.

EXAMPLES

Two lithologic units

For our first example, we assume that a reservoir is com-
posed of two lithologies: clean sand and shaley sand (about
10% volumetric clay content). The necessary data for these
two components are taken from Yin (1993) and summarized
in Table 1. It is assumed that the rock is at 30 MPa effective
pressure. Parameter λ in equation (5) is selected to be 0.9.

P-wave velocity versus water saturation in the two pure
lithologies (clean sand and shaley sand) are calculated using
Gassmann’s formula and given in Figure 3. The effect of sat-
uration is well pronounced only in the immediate vicinity of
full saturation. For example, in the shaley sand the difference
between the velocities at 80% saturation and 90% saturation
is nonexistent, whereas the difference between the velocities
at 95% saturation and 100% saturation is about 240 m/s.

We now consider three reservoir models where these two
lithologies are arranged as patchy mixtures with the total vol-
ume fraction of the clean sand equal to 0.7, 0.5, and 0.2.
P-wave velocity versus global saturation for these three mix-
tures is shown in Figure 4. In this case, noticeable velocity
changes occur not only in the vicinity of full saturation but
also at lower saturations. The reason is that at global satura-
tions below 100%, the clean sand can be partially saturated,
while the shaley sand remains fully saturated. Therefore the
transition from the undersaturated, low-velocity behavior to
the fully saturated, high-velocity behavior occurs in the shaley
sand at global saturations below 100%. These transitions can
be seen in Figure 4 as the “kinks” in the velocity-saturation
curves at intermediate saturations.

In our next reservoir model, we set the volume fraction of the
clean sand equal to 0.4 and consider two mixtures of the clean

Table 1. Permeability, porosity, elastic moduli, and density
for sand-clay mixtures at 30 MPa effective pressure.

Shaley sand Shaley sand
Sand (10% clay) (6% clay)

φ ( fraction) 0.34 0.27 0.32
k (mD) 2000 20 200
KDry rock (GPa) 9.2 12 11
GDry rock (GPa) 2.2 1.7 1.7
KGrain (GPa) 36.6 34.5 35.3
ρGrain (g/cm3) 2.65 2.643 2.645

sand and the shaley sand. In the first mixture the lithologies are
arranged in a patchy way, whereas in the second mixture the
lithologies are homogeneously mixed at the grain-scale level.
This second mixture is equivalent to a shaley sand with about
6% volumetric clay content; the necessary data for this mixture
are given in Table 1. The calculated velocities versus saturation
for both mixtures are given in Figure 5. It is evident that the
velocity-saturation function can be affected strongly by the way
the two lithologies are mixed: in a patchy arrangement, strong
velocity variations occur at intermediate saturations whereas
in the homogeneous mixture case, these variations are concen-
trated at 100% saturation.

Multiple lithologic units

Our final two reservoir models are composed of 10 differ-
ent lithologies. Each lithology is a sand-clay mixture with the
volumetric clay content varying from zero to 22.5%. We as-
sume that the effective pressure is 10 MPa and take the values
of porosity, permeability, and dry-rock bulk and shear moduli
from Yin (1993). These values are plotted in Figure 6 as clay
content and permeability versus porosity (a), and elastic mod-
uli versus porosity (b). As before, parameter λ in equation (5)
is selected to be 0.9.

We first arrange the 10 lithologies as a patchy mixture and
apply the above quantitative model to calculate VP versus sat-
uration in the “patchy” reservoir. In this reservoir model, the
patchy nature of the lithologic distribution leads to consid-
erable spatial heterogeneity in saturation level. The resulting
velocity-saturation relationship, shown in Figure 7a, is a notice-
able and almost continuous velocity variation in the saturation
range between 60 and 100%.

In our final reservoir model we assume that the volumetric
distribution of the 10 lithologic units is uniform; thus the volu-
metric fraction of each unit is 0.1. If we assume that the mixture
under consideration is not patchy, but that sand and clay are
mixed at the grain scale, we arrive at the effective volumetric
clay content of 11.25%. The corresponding velocity-saturation

FIG. 3. P-wave velocity versus saturation for clean sand and for
shaley sand. The open and solid circles indicate the end values
of the velocity for the clean sand and shaley sand, respectively.
Each curve starts at the irreducible water saturation; that is, 0.2
for the clean sand and 0.8 for the shaley sand.
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function in this homogeneous mixture is shown in Figure 7b. In
this case a strong velocity variation occurs only in the vicinity
of full saturation.

CONCLUSIONS

Under conditions of capillary equilibrium, different litholo-
gies within a reservoir can have different saturations, depend-
ing on their porosities and permeabilities. We have shown that
such reservoir-scale heterogeneity in saturation (caused by het-
erogeneity in lithology) has a significant effect on the form of
the velocity-saturation relationship. A patchy distribution of
different lithologic units may cause P-wave velocity to exhibit
a noticeable and almost continuous velocity variation across
the entire saturation range. Such a situation is markedly differ-
ent from one in which the water and gas are homogeneously
distributed at the pore scale and reservoir scale. In this case,
a velocity variation is large only at water saturations close to
100% and can be used only to distinguish between the pres-
ence of no gas (fully water-saturated) and some gas (partially
water-saturated).

The presented model, that uses lithologic information as in-
put, serves to illustrate the effect that saturation heterogeneity
could have on field seismic data. This model assumes a priori
knowledge of the types and distribution of lithologies, thus can-
not be directly applied to the interpretation of seismic data. In
this study we have developed a theoretical basis for quantify-
ing the link between the spatial variation that exists in lithology
and the corresponding acoustic signature of partial saturation.
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FIG. 4. P-wave velocity versus saturation for mixtures of the clean sand and the shaley sand. Both upper and lower bounds are
calculated using formulas (9) and (10). These bounds are very close and appear as a single curve.
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